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Abstract

In this era of IoT devices, security is very often traded off

for smaller device footprint and low power consumption.

Considering the exponentially growing security threats of

IoT and cyber-physical systems, it is important that these

devices have built-in features that enhance security. In this

paper, we present Shakti-MS, a lightweight RISC-V processor

with built-in support for both temporal and spatial memory

protection. At run time, Shakti-MS can detect and stymie

memory misuse in C and C++ programs, with minimum run-

time overheads. The solution uses a novel implementation

of fat-pointers to efficiently detect misuse of pointers at run-

time. Our proposal is to use stack-based cookies for crafting

fat-pointers instead of having object-based identifiers. We

store the fat-pointer on the stack, which eliminates the use of

shadowmemory space, or any table to store the pointer meta-

data. This reduces the storage overheads by a great extent.

The cookie also helps to preserve control flow of the program

by ensuring that the return address never gets modified by

vulnerabilities like buffer overflows. Shakti-MS introduces

new instructions in the microprocessor hardware, and also

a modified compiler that automatically inserts these new

instructions to enable memory protection. This co-design

approach is intended to reduce runtime and area overheads,

and also provides an end-to-end solution. The hardware has

an area overhead of 700 LUTs on a Xilinx Virtex Ultrascale

FPGA and 4100 cells on an open 55nm technology node. The
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clock frequency of the processor is not affected by the se-

curity extensions, while there is a marginal increase in the

code size by 11% with an average runtime overhead of 13%.
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tems security; ·Computer systems organization→Em-

bedded hardware; · Hardware → Application-specific

VLSI designs; · Software and its engineering → Com-
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1 Introduction

With the advent of IoT, there has been a rapid increase in

the use of low-power embedded devices. These devices are

deployed in wide and diverse applications that are connected

to the Internet. While these devices are becoming more per-

vasive, large scale attacks involving compromised embedded

devices such as the Mirai botnet [21] are becoming com-

monplace. In the absence of robust secure environments,

vulnerabilities introduced in these devices due to program-

ming flaws can allow attackers to take control of systems

with ease.

Several of these vulnerabilities occur due to illegal use

of memory accesses. Today, these memory access vulner-

abilities rank among the top 25 vulnerabilities in system

software [24]. Vulnerabilities like buffer overflows [34], use-

after-free(UAF) [36, 43], and double-free [16] are some of the

major security threats. These vulnerabilities still persist due

to predominant use of C and C++ programming languages
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Figure 1. a. Structure of metadata in a fat-pointer.

b. Storage of metadata along with the malloc’d region

due to the fact that these programming languages have fea-

tures like explicit pointer manipulations, flexible type casting

constructs and ease in interfacing with the hardware. These

features make them favorable for the development of operat-

ing systems, virtual machine monitors, embedded systems,

and database management software. However, these features

come with the risk of illegal memory access and have led

to many attacks in the past. Rewriting all existing code in

memory safe languages is not feasible and hence we are left

with the difficult task of retrofitting security into existing

systems.

There have been many studies relating to spatial and tem-

poral attacks due to illegal memory uses [1ś3, 5ś8, 25, 26, 28ś

31, 35], and many have proposed methods to prevent one

or both of these attacks. Some of the approaches focus only

on software solutions [1ś3, 5, 8, 28ś31], while others rely

on support from the hardware to enforce memory safety [6,

7, 25, 26, 35]. Many of the existing software solutions ei-

ther fail to provide complete temporal and spatial safety or

they incur high run time overheads. Pure software solutions

like [28] and [29] can be combined to tackle most kinds of

spatial and temporal attacks, but this approach leads to high

code size and runtime overheads of around 116% [29]. On

the other hand, hardware solutions like [23, 25] reduce the

run time overhead at the cost of hardware complexity. Al-

though [23] enhances a RISC-V processor to efficiently imple-

ment memory checks, the software support required for [23]

is extremely complex.Watchdog [25], is a compiler plus hard-

ware solution for memory safety. It uses a shadow memory

space to maintain the metadata used for memory checks.

This shadow memory can result in considerable memory

overheads. For complete spatial and temporal safety, 56% of

the system memory would be inaccessible [25]. Gandalf [18]

also has a hardware plus software solution with minimal

hardware complexity and compiler modifications. However,

it does not provide temporal safety.

In this paper, we introduce Shakti-MS, a RISC-V proces-

sor providing both spatial and temporal memory safety. It

requires modifications in the compiler to insert certain in-

structions that enable the hardware to perform the required

memory checks at runtime. Further, unlike [25], we are not

using any separate shadow memory space and unlike [23],

there are no additional tables or tag bits that are required

in the processor to store pointer metadata. These features

reduce the hardware complexities and storage overhead to

a great extent. Another significant benefit of our approach

is that the hardware is fully compliant to the RISC-V spec.

Any binary compiled with an unmodified compiler toolchain

can still run on the modified processor, and can coexist with

protected programs. One program itself may have protected

and non-protected sections by selectively building static and

dynamic libraries with protection enabled. In our approach

to prevent spatial and temporal attacks, each derived data

type object (pointers, arrays, structures) is associated with a

fat-pointer as shown in Figure 1.a. In addition to the mem-

ory pointer, the fat-pointer also contains the base, bound and

id_hash fields. The base and bound are used to enforce spatial

safety, whereas the id_hash field is used to enforce tempo-

ral safety. To protect against illegal memory operations in

stacks, each stack frame is associated with a cookie to help

craft fat-pointers for objects within the current stack frame.

The idea of having a stack based cookie instead of an object

based identifier helps reduce the storage overheads, as tem-

poral metadata is associated with stack frames rather than

individual variables. It also simplifies invalidating pointers

to a stack frame when it goes out of context. The cookie also

helps to preserve the control flow of the program by ensuring

that the return address never gets modified. Moreover, the

cookie not only helps to prevent temporal attacks in stacks

but also serves as the lower bound to prevent any overflows

beyond this region.

To provide memory safety in heaps, each allocated region

is associated with a unique 64-bit value to craft fat-pointers

as shown in Figure 1.b. The base address of pointer referenc-

ing to this malloc region would point to this unique random

number. This number also acts as the cookie for this allocated

region. All pointers pointing to the same allocated region

uses the cookie value to craft the fat-pointer. Moreover when

any one of these fat-pointers is freed the cookie value is ran-

domised to ensure that all other fat-pointers pointing to the
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same allocated region is invalid. The storage overhead for

the proposed solution is (128 ∗ 𝑛 + 64) bits. In case of stacks,

𝑛 indicates the number of derived data type objects in the

current stack frame and for heaps, it indicates the number

of aliased pointers, i.e. pointers pointing to the same allo-

cated region of memory. We introduce two new instructions

namely "hash" and "val"which are added in the RISC-V ISA

to support memory safety checks. These instructions are

inserted by the compiler at the desired places to ensure that

all pointer accesses are validated before being performed. To

achieve the compiler modifications, a transformation pass is

developed in RISC-V LLVM [19] and the hardware support

is developed in Bluespec-System-Verilog [4].

The rest of the paper is organized as follows. Section 2

defines some of the terminologies used in Shakti-MS. It also

discusses the key idea that prevents temporal and spatial

attacks on stacks and heaps. Section 3 elaborates the archi-

tecture and implementation of Shakti-MS. This section also

describes the compiler modification along with the details

of Micro-architectural implementation of Shakti-MS. Sec-

tion 4 presents some of the case studies demonstrating how

the compiler changes were made, and how these changes

help thwart certain attacks. Section 5 reports some of the

analysis like runtime overheads and code size overheads of

Shakti-MS. Section 6 concludes the paper.

2 Shakti-MS: The Crux

This section describes the proposed solution and explains

how the system is protected against various memory related

attacks. Before diving into the solution, we first define the

terminologies that will be used subsequently. We will then

describe how spatial and temporal attacks are prevented on

stacks and heaps.

2.1 Terminologies

1. Stack Frame Cookie (SFC) : It is a unique 64-bit ran-

dom number that is placed on the stack frame below

all the variables of the current function as shown in

Figure 2. This SFC is unique for each function call and

is used to provide temporal safety for all variables and

objects available within the current stack frame. More-

over, the SFC is destroyed once the function goes out

of scope ensuring all pointers to be invalid once the

function returns.

2. ROData Cookie (RODC) : Just like the SFC, it is also

a unique 64-bit random number, but unlike the SFC, it

is placed in the .bss region of the program’s memory.

It is used to protect the read only segment of memory

thereby preventing any kind of over-reads or invalid

pointer accesses. The RODC is used to provide tempo-

ral safety for both global and static variables.

3. ID_HASH : It is a 32-bit unsigned number computed

either from the cookies of stacks or heaps. It is also

Figure 2. Stack layout with and without fat-pointers

one of the four fields of the fat-pointer. The value of

id_hash is computed with the help of a new "hash"

instruction which is described in Section 3.1.1.

4. BASE : It is a 32-bit value indicating the base address

of the respective cookie. It is one of the four fields

of the fat-pointer which is used for computing hash

values and for checking lower bounds.

5. BOUND : It is a 32-bit address indicating the absolute

bound of the object. It is the maximum permissible

range that the fat-pointer can access.

6. Safe Malloc : It is a wrapper function (similar to the

malloc function) that allocates 8 more bytes than the

requested size of malloc, as shown in Figure 1.b, and

returns a fat-pointer corresponding to the allocated

region. In this extra 8-bytes we store a unique 64-bit

random number (a cookie) which helps us to protect

against temporal attacks. This cookie is used to craft

fat-pointers for all pointers pointing to the allocated

region of memory.

7. Safe Free : It is a wrapper function (similar to the free

function) that accepts fat-pointers instead of normal

memory pointers as its input. The method safefree first

validates the fat-pointer. On successful validation, it

calls the free function (after converting the fat-pointer

into a normal pointer and passing it as the input) that

deallocates the corresponding memory region. This

method also randomises the 64-bit value stored along

with the allocated region of memory, so that any fur-

ther reference to that region would result in an invalid

memory access.

8. Craft : It is a function that is used to craft fat-pointers.

It accepts four 32-bit numbers i.e base, bound, id_hash,

and the pointer itself and then returns a 128-bit object

by creating the fat-pointer. Figure 1.a shows the struc-

ture of the fat-pointer returned by the craft function.
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2.2 Preventing Temporal and Spatial Attacks on

Stacks

Stack is often the primary target of spatial attacks primarily

because overflowing local variables could potentially allow

the return address to be altered, thereby changing the control

flow of the program. Temporal attacks on the stack are not

as prevalent as spatial attacks, though they are not unheard

of [12]. A dangling pointer to the stack is a pointer of one

function that is not deleted when the function returns. This

pointer could now potentially be used to modify the stack of

another function that later uses the same region of memory.

Moreover, spatial attacks like buffer overflow have evolved

over time and given rise to more sophisticated techniques

like return-to-libc [38] or Return Oriented Programming

(ROP) [37]. Many of these attacks have mitigations in place,

such as making the stack non-executable [40] or adding stack

canaries [11] to detect tampering of return address. One of

the promising and most widely used solution is Address

Space Layout Randomization (ASLR) [39]. Although ASLR

has proven to be the most successful solutions for preventing

ROP, it does not address the underlying issue of buffer over-

flow. There have also been attacks that bypass ASLR [22].

Another, less prevalent solution is using fat-pointers where

every pointer is associatedwith somemetadata that is used to

prevent various memory corruption attacks. In our proposed

solution, we use the concept of fat-pointers but differ in the

implementation with respect to other existing fat-pointer

solutions.

2.2.1 Preventing Spatial Attacks

To prevent spatial attacks on stack, each derived data type

object is associated with a base and bound. The bound repre-

sents the maximum accessible range the pointer to an object

can access, whereas the base represents the base address of

the SFC. Although the base here is not a strict lower bound

for the object but it prevents all overflows provided that

there are no pointer decrements. Even if there are pointer

decrements it can never overflow beyond the SFC. Moreover,

a slighter loose lower bound is chosen because it allows the

same SFC to be used for temporal checks. To understand the

concept to protect against spatial attacks let us take a look

at the example below:

int x, a[10];

int *ptr = a;

x = *(ptr + 5);

x = *(ptr + 10); // spatial check violation

Figure 2, shows the stack frame with and without the fat-

pointers. The shaded region represents the metadata for the

stack frame. The SFC represents the "Stack Frame Cookie"

which is used to protect the current stack frame and craft

fat-pointers for the objects within the current stack frame.

The objects placed below the SFC, namely fpr_a and fpr_ptr

represents the fat-pointers for their respective objects a and

ptr. These fat-pointers are placed below the SFC to ensure

that there is no tampering of the metadata due to pointer

decrements. Moreover, when the pointer is assigned to point

to the array in the stack, the metadata of the array is copied

to the metadata of the pointer. Also, every load and store

instructions to this object are preceded by a validity check to

ensure memory safety. So in the above example, the pointer

ptr can only access (ptr + 5) and would fail to access (ptr +

10).

2.2.2 Preventing Temporal Attacks

Temporal attacks on stack occur when a pointer to a local

variable of a function is not deleted after the function returns,

allowing it to overwrite the stack of any other function that

occupies the region of the stack used by the previous function.

Consider the following code snippet that demonstrates how

a temporal attack can occur on stacks and how the proposed

solution mitigates such attacks:

int* q;

void foo() {

int a;

q = &a;

}

int main() {

foo();

... = *q; //temporal check violation

}

As mentioned before, each function has its own unique

SFC which is used to derive the id_hash of each pointer in

the current stack frame. Moreover, every pointer to objects

in stack have its own metadata associated with it. Relating

this fact to the above example, there are two functions which

have their own unique SFC. When the the global pointer

q points to the variable a in function foo, it has its id_hash

derived from the SFC of function foo. As soon as foo goes

out of scope, SFC of that function is randomised. Therefore

when q gets dereferenced in main after returning from foo,

it results in a validation error.

2.3 Preventing Temporal and Spatial Attacks on

Heaps

The heap is dynamically allocated region in memory that the

program uses at runtime to typically store program data. A

heap overflow or an overrun is a type of buffer overflow that

occurs in this heap data area. Exploitation is performed by

corrupting the heap data in specific ways to cause programs

to overwrite internal structures such as a linked list or malloc

metadata. Moreover, overflowing buffers in heap can also

change pointers that point to important data. Attacks like

use-after-free [43] and double-free [16] are quite common

in heaps which have led to critical system failures.
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2.3.1 Preventing Temporal Attacks

There have been many solutions proposed to mitigate tem-

poral attacks [2, 3, 9, 10, 15, 29, 31, 32, 35, 41, 42]. They can

be classified into two categories, namely, "location based"

and "identifier based". Location based [15, 17, 31, 41] ap-

proaches use an extra data structure such as a tree or it uses

a hashtable/trie-based implementation of shadow memory

space to keep track of the allocated and deallocated mem-

ory regions. This approach prevents most dangling pointers

but fails to protect against stale pointers which points to

reallocated memory, as it uses the object’s address to deter-

mine if the pointer is valid or not. In contrast, the identifier

based [25, 27, 29, 35, 42] approach uses metadata associated

with each pointer or a lock-and-key mechanism to prevent

the exploitation of dangling pointers.

In Shakti-MS we use a lock-and-key based approach to

mitigate all variants of temporal attacks. To protect against

dangling pointers, double-free and other temporal attacks,

all calls to malloc and free are replaced with safemalloc and

safefree, which are wrapper functions that add metadata to

heap-allocated objects. These are the basic function calls in

C that provide low level access to memory. So protecting

these functions are of prime importance. The safemalloc

function call allocates an extra 8 bytes of memory, stores

a unique 64-bit random number in it and returns a 128-bit

fat-pointer having the pointer metadata. In the metadata, the

id_hash field represents the key and the base represents the

lock location. Every pointer pointing to the allocated region

will be transformed into a fat-pointer with their respective

id_hash and base. To ensure temporal safety, the following

check is performed on dereferencing a pointer:

if ( id_hash != hash(memory[base]) )

abort();//dangling pointers detected

The hash function is introduced because even if the lock

location is compromised due to implementation flaws or by

any other means, the hash function still remains unknown.

This introduces an extra level of difficulty for the attacker to

craft any arbitrary fat-pointers. Furthermore, all subsequent

loads and stores on the fat-pointers are prefaced by temporal

safety checks. The safefree method randomizes the 64-bit

value stored at the start of the allocated region, which further

ensures that any pointer dereference to that allocated region

after being deallocated would result in a validation error.

The other method which might cause a problem for dangling

pointers is realloc. To ensure safe handling of reallocations,

the safereallocmethod replaces all realloc calls in the program.

Saferealloc accepts a 128-bit fat-pointer to an object and the

reallocation size as parameters. It validates the accepted fat-

pointer, allocates a new region in heap, copies data over,

frees the old region, and returns a valid fat-pointer for the

newly allocated region.

2.3.2 Preventing Spatial Attacks

Spatial attacks, as the name suggests, involves accessing re-

gions of memory beyond the legitimate and intended scope

of the code. These attacks are often accomplished by over-

flowing buffers in memory or reading beyond the limits of

an object. To ensure spatial safety on the heaps, we use fat-

pointer to restrict memory access of a pointer within a base

and bound address. As discussed in the previous section

each malloc’d region is now associated with a unique 64-bit

random number and every pointer pointing to the malloc’d

region has been transformed into a fat-pointer. Every pointer

now has its own base and bound associated with it, where

the base points to the start of the allocated region and the

bound points to the end of the allocated region, referring the

absolute memory address the pointer can access. All pointer

dereferences undergoes a base and bound check, ensuring

spatial safety.

For better clarity on the proposed solution, consider the

following sample code:

1. int *p,*q,*r;

2. p = malloc(10*sizeof(int));

3. q = r = p ;

4. int value = *(r+10); // spatial safety violation

5. free(p);

6. ... = *q; //temporal safety violation

The pseudo code equivalent of the above block after the

compiler transforms:

1. __int128 fpr_p,fpr_q,fpr_r;

2. fpr_p = safemalloc(10*sizeof(int));

//safemalloc returns a __int128 object

//consisting of base,bound,id_hash and pointer

3. fpr_q = fpr_r = fpr_p ;

4.1 validate (fpr_r+10); //Spatial safety violation

4.2 int value = *(fpr_r+10);

5 safefree(fpr_p);

6.1 validate fpr_q; //Temporal safety violation

6.2 ... = *fpr_q;

As shown above in line numbers 2 and 5, the compiler

replaces every malloc/free calls with safemalloc and safefree

wrapper functions. Moreover, the compiler also inserts va-

lidity checks before every pointer dereferences as shown in

line numbers 4.1 and 6.1, ensuring both temporal and spatial

safety.

3 Architecture and Implementation of
Shakti-MS

In the previous section, we looked for mechanisms to pre-

vent spatial and temporal attacks on stack and heap. In this

section, we look deeper into compiler and hardware instru-

mentation aspects of Shakti-MS.

In order to provide security guarantees, the given code

might need to be instrumented. This can be done at the bi-

nary, compiler or the source code level. Additionally, new
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hardware instructions can also be added to accelerate mem-

ory safety checks. Binary level code instrumentation works

to modify the source code after compilation. This approach,

however, limits the flexibility of code instrumentation. For

example, one cannot add a new instruction in between, with-

out affecting the branch instructions that work on relative

addresses. Source code transformation, on the other hand,

doesn’t provide one with enough information to apply trans-

formations. For example, the stack organisation is not visible

at the source code level.

However, compiler based instrumentation does not have

any of the above mentioned drawbacks. Therefore, in our

solution, we use compiler based transformations to achieve

code instrumentation. Also, new hardware instructions are

added to have minimal performance overheads while per-

forming these security checks. The details of the implemen-

tation are given below.

3.1 ISA Extensions

This section describes the details of the two new instructions

that are added to the RISC-V ISA in order to support memory

safety.

1. hash Instruction : Thehash instruction is used to com-

pute the id_hash field of the fat-pointer. The instruc-

tion receives the base address of the SFC for stacks, the

base address of the RODC for global variables, or the

base address of the heap-allocated region. It returns a

32-bit hash of the value stored at the memory location

passed as an argument. The instruction is in the form

of

hash rd, rs1

where the base address resides in rs1 register and the

computed hash value is stored in the register rd. The

instruction computes

id_hash = hash(memory[base])

2. val Instruction : The val instruction is used to vali-

date the fat-pointer. It takes two arguments, the lower

64-bit of the fat-pointer and the higher 64-bit of the

fat-pointer. It performs temporal and spatial validity

checks on the fat-pointer. The val instruction is of the

form

val rs1, rs2

where rs1 represents the higher 64-bit and rs2 repre-

sents the lower 64-bit. The val instruction performs

the following checks:

if(base == NULL) //Check 1

abort();

if(id_hash != hash(memory[base]) //Check 2

abort();

let TargetPrefix = "RISCV" in {
def int_riscv_hash : GCCBuiltin <"__builtin_riscv_hash">,
      Intrinsic<[llvm_i64_ty],  // returns 64-bit hash
          [llvm_i64ptr_ty],    //address to store cookie
          [ ],   // properties: nothing
          "llvm.RISCV.hash"> ;  // name or description
}

def riscv_hash : HashInst<(outs GPR64:$rd), (ins 
GPR64:$rs1) , "hash\t$rd, $rs1", [(set GPR64:$rd, 
(int_riscv_hash GPR64:$rs1))]>;

class HashInst<dag outs, dag ins, string 
asmstr, list<dag> pattern>
  : RISCV32Inst<outs, ins, asmstr, 
pattern, FrmI> {
  let Pattern = pattern;
  bits<5> rs1;
  bits<5> rs2;
  field bits<32> Inst;

  let Inst{31-20} = 0;
  let Inst{19-15} = rs1;
  let Inst{14-12} = 0;
  let Inst{11-7} = rs2;
  let Inst{6-2} = 2;
  let Inst{1-0} = 3; }

Figure 3. Code for adding "hash" intrinsic in RISC-V LLVM

if(ptr < base || ptr >= bound) //Check 3

abort();

Here, Check 1 and Check 2 ensure temporal safety by

verifying that id_hash stored alongwith the fat-pointer

and hash computed from value stored in the memory

location pointed by base are equal. Check 3 ensures

spatial safety by verifying that every pointer access is

within the base and bound. This prevents all manifes-

tations of spatial and temporal memory attacks.

3.2 Compiler Based Instrumentation

The compiler based instrumentation needed in Shakti-MS

is implemented using the RISC-V LLVM [19] compiler in-

frastructure. The LLVM toolchain converts the C-code to

an intermediate representation (IR), runs certain passes on

the intermediate representation (for instrumentation or opti-

mization) and finally compiles the IR into machine code. The

ability to write transformation passes that operate at the IR

level provides great flexibility in terms of making changes at

a logical level. To ensure spatial and temporal safety from the

compiler perspective, we wrote compiler passes to analyze

programs and understand the program behavior. We then

wrote transformation passes that operate on the IR to add

metadata to pointers and insert runtime checks.

In our solution, we have added support for two new ma-

chine instructions, namely "hash" and "val", in RISC-V LLVM

with the help of intrinsics. These intrinsics are represented

as function calls at the LLVM-IR level but will be trans-

lated into machine instructions at the assembly level. As

per LLVM’s documentation [20] adding a new instruction

directly changes the bit code format, and would require a

considerable amount of effort to maintain compatibility with

the previous versions. Thus, we have proceeded with adding

a new intrinsic to the compiler instead of an instruction. The

code for adding a new intrinsic in RISC-V LLVM is shown

in Figure 3.

To explain the process of implementing the IR transfor-

mation pass, we divide it into a set of tasks (not necessarily

in an order) that were performed.
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1. Handling global variables and global pointers :

This part of the transformation pass deals with han-

dling global variables and global pointers which might

cause a potential threat. Since these variables neither

reside in the stack nor on the heap so we cannot di-

rectly craft a fat-pointer using the SFC or the metadata

stored along with the malloc’d region. These variables

lie in the read only section of the memory known as

.bss. To prevent overflow or read-past-bounds attacks

on global pointers, we have crafted fat-pointers using

the RODC instead.

2. Replacing malloc calls and free calls with safe-

malloc and safefree : This part of the transformation

pass replaces all malloc calls with safemalloc, free with

safefree and realloc with saferealloc. It also mutates

the return type of the malloc and realloc functions to

fat-pointers.

3. Adding the stack frame cookie : This transforma-

tion pass inserts instructions to the first basic block of

every function in IR. The inserted IR code generates

a SFC and places it at the bottom of the stack frame

every time the function is called at runtime. Once the

SFC is placed on the stack, its hash value is computed

using the hash instruction and stored in some tem-

porary register in LLVM. This hash value is used to

create fat-pointer for derived datatype objects on stack.

The transform also adds code to the last basic block

of the function which randomizes the SFC before the

function returns. This ensures that once the function

goes out of scope and returns to the calling function,

any attempts to use pointers to that stack frame will

raise an exception.

4. Handling pointer arguments and returns for

function calls within, and outside amodule : This

part of the pass operates on function calls and func-

tion prototypes within the module and converts ev-

ery pointer in the arguments or return values to fat-

pointers. However, system calls like scanf, printf or

function calls outside the module are left untouched.

Any fat-pointers passed to them as arguments are first

validated and collapsed into pointers. Additionally, to

protect against overflows caused by special library

functions like memcpy and strcpy, explicit checks are

added to ensure destination buffer length is greater

than source buffer length.

5. Crafting fat-pointers : Since our solution is based on

fat-pointers, this part of the transformation pass deals

with transforming every derived data type objects on

stacks to fat-pointers. The fat-pointer is created by

calling the function named craft. Then all uses of the

existing object are replaced with the newly created

fat-pointer to ensure memory safety.

6. Transformations for various LLVM instruction :

This is the most important part of the transformation

pass converting pointers to fat-pointers and handling

type mismatch of all LLVM instructions. It is also re-

sponsible for adding val instruction before every load

and store instruction. It also ensures that wherever

a pointer is dereferenced, a validity check is inserted

just before it. The validity checks are only inserted by

the compiler in the form of a val instruction, but the

actual check is performed by the hardware at runtime.

7. Warnings for pointer decrements : This is an anal-

ysis pass used for identifying any decrement operation

performed on pointers within the program. As stated

earlier, pointer decrements on stacks might cause il-

legal access to other objects within the current stack

frame, below the base element of the pointer. Thus,

this pass of the compiler is responsible for throwing

a warning whenever a pointer decrement is encoun-

tered in the desired function or module. Currently, no

automated solution has been put in to fix this problem;

therefore, its the responsibility of the programmer to

handle this scenario. A possible solution can be to re-

place the pointer decrement with a pointer plus offset

for compiler-enforced safety, or manually validate the

safety and suppress the warning.

3.3 Micro Architecture

The hardware and ISA extensions proposed for Shakti-MS

have been implemented over an existing baseline processor

in order to provide a fair comparison of the incurred area

and performance overheads. We have used the 64-bit 6-stage

in-order Shakti C-64 design [14] as our baseline processor

whose micro-architecture is shown in Figure 4. This proces-

sor was designed using Bluespec System Verilog (BSV) [4].

Following is a brief outline on the functioning of Shakti C-64:

1. PCGenerate Stage: This is the first stage of the pipeline.

This stage is responsible for generating the value of

the Program Counter (PC). The Branch Prediction Unit

(BPU) sends out the value of PC and the prediction

bits. If the prediction bits indicate that the branch is

taken, the next PC is the value that is given out by the

BPU; else, the next PC is computed as current PC + 4.

This PC is then sent to the instruction cache.

2. Fetch Stage: The response of the instruction cache is

read in this stage. Once the instruction is received, it is

then sent to the branch predictor, and also en-queued

inside the IF (Instruction Fetch) - ID (Instruction De-

code) Inter-Stage Buffer (ISB) provided there was no

bus error or a misaligned address exception.

3. Decode and Operand Fetch Stage: The instruction

from the IF-ID ISB is decoded in this stage. The de-

coding process involves identification of the type of

instruction, the source operand registers, the destina-

tion register, etc. Once the source operand addresses

are known, the values are then read from the register
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Figure 4. 6-stage pipeline processor depicting micro-architecture of Shakti-C

file. If a write-back is happening to one of the source

registers, that value is forwarded; else the value stored

in the register file is read. The operands, along with

the other metadata are then stored in the ID - EXE

(Execute) ISB.

4. Execute Stage: In this stage, the operands are chosen

either from the ID - EXE ISB, or from the operand

forwarding path, and the instruction is executed using

the ALU (Arithmetic-Logic Unit) for all instructions

except the Floating Point (FP) instructions. The FP

instructions go through the dedicated FP Unit that are

IEEE-754 2008 compliant. Additionally, for a branch

instruction, the prediction is validated in this stage, and

the result is then sent to the BPU where the prediction

bits (that decide if a branch is taken or not taken) are

updated accordingly. If the branch was mispredicted,

then the IF-ID ISB is invalidated and the PC is set to the

correct address. Also, for memory instructions, this

stage simply calculates the effective memory address.

The results of this stage are stored in the EXE - MEM

(Memory) ISB.

5. Memory Stage: In this stage, if the instruction exe-

cuted is found to be a load/store then the request is

sent to the data cache to perform the necessary mem-

ory/IO operation. On completion of the memory/IO

access, if there was no bus error, the cache responds

back with a valid data (for load instructions) or a valid

acknowledgement (for store instructions). Memory op-

erations could also return a misaligned exception. This

response is stored into the MEM - WB (Writeback)

ISB. However, if the instruction executed did not re-

quire any memory accesses then the result from the

EXE-MEM ISB is simply buffered into the MEM-WB

ISB.

6. Writeback Stage: This stage is responsible for writ-

ing the results back to the register file if no exception

was generated. Also, the result is forwarded via the

operand forwarding path. In case of an exception, a

complete pipeline flush is initiated, and the proces-

sor jumps to the exception handler routine. Also, for

instructions like store and branch, no operations are

performed in this stage.

As far as the hardware implementation of the two new in-

structions are concerned, the PCGenerate, Fetch and, Decode

and Operand Fetch stages for both of them work similar to

that of any other arithmetic instruction. Actions performed

in the remaining stages are described below:

1. Hash Instruction

∙ Execute stage: In the execute stage, the hash in-

struction is treated similar to that of a load instruc-

tion. Here the effective address is resolved by retriev-

ing the address from the rs1 register. Moreover, an

extra piece of information is passed onto the mem-

ory stage to distinguish between normal loads and

the hash instruction.

∙ Memory stage: In this stage, memory access is per-

formed and the pipeline stalls until a response is

obtained from the memory subsystem. Once a re-

sponse is obtained it is checked for exceptions. If the
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response was a valid one, then the hash of the read

value is computed and written onto MEM-WB ISB.

Additionally, the hash value computed is forwarded

via the operand forwarding path.

∙ Writeback stage: The writeback stage of a hash in-

struction is similar to that of a load instruction. The

results are forwarded via the operand forwarding

path and also written into the register file, provided

there was no exception generated.

2. Val Instruction

∙ Execute stage: In this stage, two actions are per-

formed by the processor. First, the effective address

is resolved i.e. the address of the base is extracted

from the operands. To be more precise the address

is the lower 32-bits of rs1 register. This address will

be further used in the memory stage to issue a load

request to get the cookie. The second action is to

compare the value of the pointer with the values of

base and bounds that are present in the fat-pointer.

If the pointer lies within its permissible limits, no

exception is raised, else an exception bit is set and

the result is forwarded to the subsequent stages.

∙ Memory stage: The val instruction in this stage

basically performs three operations provided that

the exception bit was not set in the execute stage.

Initially, it issues a load request to the effective ad-

dress that was computed in the execute stage. Once

the response is obtained, necessary checks for ex-

ceptions are performed, and on valid response only,

the hash of the returned value is computed. Finally,

the computed hash is compared with the id_hash

stored along with the fat-pointer (id_hash stored in

the upper 32-bits of rs2). If these values match, then

the load is treated to be valid, else an exception bit

is set to indicate invalid memory accesses by the

pointer. The results obtained in this stage are then

passed onto the writeback stage.

∙ Writeback stage: This stage reads the data from the

previous stage and checks if the exception bit is set.

If so, then an Invalid_Pointer exception is raised; else

no operation is performed thereby indicating that

the subsequent load or store instruction is indeed a

valid access.

4 Case Study

This section provides a sketch of the generated LLVM-IR

code (by Clang) of different parts of a simple C-program,

and also how the transformation pass modifies the IR. Given

below are some of the examples of the transformation pass.

1. Handling the SFC : Given below is the LLVM IR

code to insert the SFC and collapse it just before the

function exits. The keyword "alloca"is used to allocate

a memory on the stack and all variables with ’%’ sign

represent a temporary register. LLVM uses the concept

of static single assignment and has infinite number of

registers for computation.

;insert this at the end of all

;alloca calls in a function

%stack_cookie = alloca i64

%2 = call i64 @random64()

store i64 %2, i64* %stack_cookie

;body of the function call

...

;insert this at the end of the function

%4 = call i64 @random64()

store i64 %4, i64* %stack_cookie

%stack_cookie_burn = call

i64 @llvm.RISCV.hash(i64* %stack_cookie)

Here @llvm.RISCV.hash represents the intrinsic call to

our function hash.

2. Crafting fat-pointers : Crafting a fat-pointer is done

by calling a function named craft with four parameters

namely base, bound, id_hash and the pointer itself. The

craft function is a few lines of assembly code inserted

during code lowering. The call to craft function below

is used to create a fat-pointer to a character array of

size 10.

...

%stack_cookie_32 = ptrtoint i64* %stack_cookie

to i32

...

%stack_hash = trunc i64 %stack_hash_long

to i32

%2 = alloca [10 x i8], align 1

%pti1 = ptrtoint [10 x i8]* %2 to i32

%absolute_bnd2 = add i32 %pti1, 10

%fpr3 = call i128 @craft(i32 %pti1,

i32 %stack_cookie_32, i32 %absolute_bnd2,

i32 %stack_hash)

3. Validating Loads and Stores : As stated earlier every

loads and stores are prefaced by validity checks, so

let us take a single line of C code and see how the

following code gets transformed.

a[5] = *(ptr+3);

Here a is an array of size 10 and ptr is a pointer point-

ing to the array. The code below is the LLVM IR repre-

sentation of the said line:

%2 = alloca [10 x i8], align 1

%3 = alloca i8*, align 8

%6 = load i8*, i8** %3, align 8

%7 = getelementptr inbounds i8, i8* %6, i64 3

%8 = load i8, i8* %7, align 1

%9 = getelementptr inbounds [10 x i8],

[10 x i8]* %2, i64 0, i64 5

store i8 %8, i8* %9, align 1
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Assuming that fat-pointers exist for the variables a and

ptr, the different instructions get modified as follows :

...

;Fat-pointer to a

%fpr3 = call i128 @craft(...)

...

;Fat-pointer to ptr

%fpr6 = call i128 @craft(...)

%fpr_low13 = trunc i128 %fpr6 to i64

%fpr_hi_big14 = lshr i128 %fpr6, 64

%fpr_hi15 = trunc i128 %fpr_hi_big14 to i64

call void @llvm.RISCV.validate(i64 %fpr_hi15,

i64 %fpr_low13)

%ptr32_16 = and i64 %fpr_low13, 4294967295

%ptrl = inttoptr i64 %ptr32_16 to i128*

%fpld = load i128, i128* %ptrl, align 8

%zextarrayidx17 = zext i32 3 to i128

%arrayidx18 = add i128 %fpld, %zextarrayidx17

;validate arrayidx18

...

%ptrl23 = inttoptr i64 %ptr32_22 to i8*

%5 = load i8, i8* %ptrl23, align 1

%zextarrayidx24 = zext i32 5 to i128

%arrayidx25 = add i128 %fpr3,

;validate arrayidx25

...

%ptrs30 = inttoptr i64 %ptr32_29 to i8*

store i8 %5, i8* %ptrs30, align 1

The above code also shows that all the getelementptr in-

structions have been transformed to offsets and added

with the fat-pointers to point to the desired location

of memory.

4. Handling external function calls like strcpy : To

handle external function calls like strcpy, explicit checks

for length of the destination and source buffer need

to be performed. This is because we do not have any

control of the external function and these can cause

overflows of buffer. Let us look at the sample code

below :

char a[10],b[10];

...

strcpy(a,b);

The LLVM representation of the following code is

given below:

...

%5 = getelementptr inbounds [10 x i8],

[10 x i8]* %2, i32 0, i32 0

%6 = getelementptr inbounds [10 x i8],

[10 x i8]* %3, i32 0, i32 0

%7 = call i8* @strcpy(i8* %5, i8* %6)

The modified LLVM-IR code is :

...

%zextarrayidx = zext i32 0 to i128

;fpr3 is the fat pointer to array "a"

%arrayidx = add i128 %fpr3, %zextarrayidx

%zextarrayidx8 = zext i32 0 to i128

;fpr6 is the fat pointer to array "b"

%arrayidx9 = add i128 %fpr6, %zextarrayidx8

%fpr_low10 = trunc i128 %arrayidx to i32

%ptrc11 = inttoptr i32 %fpr_low10 to i8*

%fpr_low12 = trunc i128 %arrayidx9 to i32

%ptrc13 = inttoptr i32 %fpr_low12 to i8*

%source_len = call i64 @strlen(i8* %ptrc13)

%check_len = icmp ule i64 10, %source_len

br i1 %check_len, label %5, label %7

...

In the above modified code, if the condition of the

branch instruction is true, then the code jumps to a

basic block and finally exits; else it executes normally

.

5. Malloc : In LLVM IR the malloc call would get trans-

formed into a safemalloc call. Let us look at a simple

example of how the original IR looks and the modified

IR is generated.

char *q = malloc(10);

The corresponding LLVM IR code would look some-

thing like this:

%1 = alloca i8*, align 8

%2 = call i8* @malloc(i64 zeroext 10)

store i8* %2, i8** %1, align 8

where %1 refers to the allocation of variable q. Malloc

allocates 10 bytes of memory, and assigns it to q. The

modified IR code is given below :

%1 = alloca i128, align 8

...

%fpr = call i128 @craft(i32 %pti,

i32 %stack_cookie_32, i32 %absolute_bnd,

i32 %stack_hash)

%3 = call i128 @safemalloc(i64 zeroext 10)

;validate and store

...

call void @llvm.RISCV.validate(i64

%fpr_hi, i64 %fpr_low)

...

store i128 %3, i128* %ptrs, align 8

6. Free : Similar to the malloc call, a free call also gets

modified into safefree and it now accepts a 128-bit fat-

pointer instead of a normal pointer. Assuming that

a variable q points to an already malloc’d memory

region, a call to free(q) is implemented using the below

LLVM instructions:

%3 = load i8*, i8** %1, align 8

call void @free(i8* %3)

where %1 represents the same variable shown in the

malloc code above. The modified LLVM code is:
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Figure 5. Graph demonstrating cycle count overheads of

different programs.

;validate and load

...

call void @llvm.RISCV.validate(i64 %fpr_hi3,

i64 %fpr_low1)

...

%fpld = load i128, i128* %ptrl, align 8

call void @safefree(i128 %fpld)

5 Results

Shakti-MS has two implementation aspects, namely, hard-

ware design and compiler transformations. Hardware ad-

ditions cause an increase in the area of the chip, and also

may increase the critical path length. The compiler transfor-

mations, on the other hand, may cause an increase in the

code size and runtime overheads. This section discusses the

overheads in terms of all these aspects, and also quantifies

the effectiveness of the proposed solution.

5.1 Runtime Overheads

To calculate the runtime overheads we have used some of the

SPEC benchmarks that had successfully compiled using RISC-

V LLVM toolchain. We also used some of the buffer over-

flow benchmarks given in SARD-dataset-88 [13], and some

commonly used programs consisting of intensive pointer op-

erations/arithmetic to estimate the runtime overheads. The

average runtime overhead is approximately 13%.

Figure 5 shows the cycle count overhead for some of the

benchmarks and other programs. The white bar in the graph

indicates cycle counts for execution if the programs are com-

piled with vanilla RISC-V CLANG, while the black bar indi-

cates the cycle count if the programs are compiled with the

modified compiler toolchain.
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Figure 6. Graph demonstrating overheads of different pro-

grams with respect to code size.

5.2 Overheads in the Code

To estimate overheads in terms of code size, the hexdump of

the same set of programs were compared with and without

the LLVM transformation pass.

Figure 6 shows the code size of different programs. The

white bar indicates the code size of the program without

the transformation pass applied, whereas the black bar in-

dicates the code size with the transformation pass applied.

The average increase in code size is about 11%.

5.3 Hardware Overheads

The modified microprocessor was synthesized on UMCIP’s

open 55nm technology node, and also on a Virtex Ultrascale

FPGA (part number xcvu0095-ffva2104-2-e) using Xilinx Vi-

vado 2016.1. The RAMs of caches were treated as a black

box for the ASIC synthesis due to unavailability of required

SRAM cuts. Shakti-MS has an overhead of 4100 cells on ASIC,

and 700 LUTs on the FPGA.

The critical path, which is in the execute stage, did not

change as the base and bounds check, and hash computation

are done in parallel with the existing circuit in that stage.

Also, the extra logic in the memory stage does not fall on

the critical path.

5.4 Effectiveness

To check the effectiveness of bounds checking and use after

free attacks, we have used the SARD-dataset-81 and SARD-

dataset-89 downloaded from SAMATE-NIST [13] website.

We also developed our own test cases for more obscure mem-

ory corruption attacks. Our test cases were developed to

target the different uses of dangling pointers for temporal

safety checks, whereas the SARD-dataset was used for spatial

safety checks. The SARD dataset has around 1100 programs

consisting of both correct and vulnerable ones. Our solution
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Table 1. Comparative Study with Existing Works

Safety Check
Instrumentation

Methods
Metadata

Size

Performance

Overheads

Spatial Temporal Hardware Compiler Hardware Software

[33] ✔ × × ✔ 128*n NA NA

[27] ✔ ✔ × ✔ 256*n + 64 NA 29%

[25] ✔ ✔ ✔ ✔ 256*n + 64 NA 25%

[23] ✔ ✔ ✔ × 64*n + 128 0% NA

[7] ✔ × ✔ × 128*n NA 10%

Shakti-MS ✔ ✔ ✔ ✔ 128*n 0% 13%

was able to detect all the vulnerabilities it was designed to

address. The issues relating to false negatives were due to

multi-threaded programs and nested sub-object protection.

However, issues relating to sub-objects are handled to ensure

that the overflow is never beyond the object’s scope. Since

these are very small tests that are written just to check for

the effectiveness of a solution, these have not been included

in Figure 5. Nevertheless, the runtime overheads that were

observed for these programs were negligible.

6 Conclusion

In this paper, we propose Shakti-MS, a RISC-V processor

supporting both spatial and temporal memory safety. It is a

light-weight co-design approach with the compiler respon-

sible for inserting new instructions that perform memory

checks and the hardware responsible for executing them.

Table 1 shows a comparative study of the runtime overhead

of the proposed solution with the existing works. The low

runtime overhead is achieved due to the fact that the work

is being divided between the compiler and the hardware.

The major contribution of the paper lies in the fact that we

are using stack based cookies instead of using object based

id’s. The proposed implementation of fat-pointer prevents

both spatial and temporal attacks on stacks and heaps with

minimal storage and runtime overheads. Another major ad-

vantage of Shakti-MS allows existing RISC-V software and

binaries to be run unmodified. This means that any program

compiled with an unmodified compiler toolchain can still run

on the modified processor and co-exist with the protected

programs.

Although we see that Shakti-MS works well for protect-

ing against both spatial and temporal attacks, but observing

its effectiveness in case of sub-object protection and multi-

threading environment would be an interesting work. More-

over, since our code transformation relies on the compiler

to insert instructions, different optimisation passes can be

applied before and after our own transformation pass. One

example would be to run a pass and figure out statically as

to which pointers need to be transformed into fat-pointers,

and only transform those pointers to have minimal runtime

and code size overheads.

A Artifact Appendix

A.1 Abstract

Our artifact primarily consists of a modified LLVM toolchain.

Some sample programs have been included which can be

used to check the robustness in implementation of the pro-

posed solution. The artifacts are provided in a docker image.

The image contains a pre-built LLVM toolchain, the riscv64

GNU toolchain, spike RISC-V ISA simulator, and sample C-

programs. The links of the repositories containing the source

code of themodified LLVM toolchain and themodified Shakti

microprocessor have also been provided.

A.2 Artifact Check-list (Meta-information)

∙ Program: Various C-programs that have various manifes-

tations of spatial and temporal vulnerabilities have been

included to verify that the implementation.

∙ Compilation: Modified 64-bit RISC-V LLVM which gener-

ates 64-bit RISC-V executable (Inside the docker image).

∙ Transformations: LLVM passes.

∙ Run-time environment: Any 64-bit Linux (VM or host)

with docker installed.

∙ Hardware: amd64/x86_64 system

∙ Execution: Less than a second for sample C-programs that

have been included.

∙ Metrics:Access violation detection, Cycle count, Instruction

count.

∙ Output: Buggy programs when compiled with the modified

LLVM compiler will result in an exception being raised at

runtime when an access violation occurs.

∙ Experiments: AMakefile has been included to run the sam-

ple C-programs.

∙ Howmuchdisk space required (approximately)?: 4-8GB

∙ How much time is needed to prepare workflow (ap-

proximately)?: 1 Hour

∙ How much time is needed to complete experiments

(approximately)?: 1 Hour

∙ Publicly available?: Yes

∙ Code licenses (if publicly available): GPLv3 for LLVM

transformation passes; BSD 3-clause for Shakti Bluespec

code.

∙ Workflow framework used: Docker

A.3 Description

A.3.1 How Delivered

The artifacts are bundled into a docker image which can

be found at illustris/shakti-ms-artefacts on dockerhub. The

source code of the modified LLVM toolchain can be found at

https://github.com/illustris/riscv-llvm-toolchain. Also, the

source code of the modified Shakti microprocessor can be

found at https://bitbucket.org/arjunmenon/sec-c.

A.3.2 Hardware Dependencies

The docker image needs to be run on an amd64/x86_64 (VM

or host).
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A.3.3 Software Dependencies

Docker should be installed in the host system. Also, in order

to compile the hardware source code, Bluespec compiler

should also be installed.

A.3.4 Data Sets

The data set primarily consists of sample C-programs which

have various manifestations of spatial and temporal memory

vulnerabilities.

A.4 Installation

Run the following command on a terminal:

$ sudo docker run --rm -it illustris/shakti-ms-artefacts

A.5 Experiment Workflow

Run the demo to test esoteric C functionality:

$ cd /root/demos/C\_functionality

$ make

To test a new C-program (named filename.c):

$ cd /root/demos/size_and_cycles

$ make CODE=filename.c cyclecount

Follow the instructions printed by make. Moreover, to mea-

sure the time taken for the C-program to execute, insert a

rdcycle instruction at the beginning and end of the program

(as done in the example demo program). The actual cycles

taken will be the difference between these two values.

Print the code size of the program before and after applying

the transformation:

$ make CODE=filename.c codesize

Run the provided buffer overflow exploit programs:

$ cd ~/demos/exploits/buffer_overflow

$ make

The above command will build and run two versions of the

code; one with, and one without a buffer overflow vulnera-

bility. The hardware implementation of val instruction raises

an exception to terminate the process when access violations

are detected, but this demo uses a software simulated version

of val that prints a debug message and resumes.

A.6 Evaluation and Expected Results

∙ C functionality demo passes all tests

∙ Buffer overflow demo detects and warns of buffer over-

flows

∙ Code size demos create modified binaries with code

sizes falling under specified thresholds

∙ Cycle count is not an actual representative of the ob-

tained results, as the demo uses software-emulated

hash and val instructions that expand to multiple in-

structions at runtime
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